Basic System Entity Structure Concepts

Faculty of Engineering / Research Group CEA

Thorsten Pawletta

E-Mail: thorsten.pawletta@hs-wismar.de

Web: www.hs-wismar.de / www.cea-wismar.de

SES/MB Modeling Approach

SES/MB Modeling Approach Formal Modeling

SES/MB Modeling Approach Formal Modeling

• SES describes permissible structure & parameter variants

SES/MB Modeling Approach Formal Modeling

- SES describes permissible structure & parameter variants
- MB defines basic dynamic models

• SES introduced by B.P. Zeigler and J. Rozenblit

- SES introduced by B.P. Zeigler and J. Rozenblit
- Amongst others extended by research group CEA (Wismar)

- SES introduced by B.P. Zeigler and J. Rozenblit
- Amongst others extended by research group CEA (Wismar)
- SES is a tree structure

- SES introduced by B.P. Zeigler and J. Rozenblit
- Amongst others extended by research group CEA (Wismar)
- SES is a tree structure
 - Well defined by axioms

- SES introduced by B.P. Zeigler and J. Rozenblit
- Amongst others extended by research group CEA (Wismar)
- SES is a tree structure
 - Well defined by axioms
 - > Two types of nodes
 - Entity nodes
 - > Descriptive nodes

- SES introduced by B.P. Zeigler and J. Rozenblit
- Amongst others extended by research group CEA (Wismar)
- SES is a tree structure
 - Well defined by axioms
 - > Two types of nodes
 - Entity nodes
 - > Descriptive nodes

Entity nodes real or imaginary objects

- SES introduced by B.P. Zeigler and J. Rozenblit
- Amongst others extended by research group CEA (Wismar)
- SES is a tree structure
 - Well defined by axioms
 - > Two types of nodes
 - Entity nodes
 - > Descriptive nodes
 - Three types of edges (relations between nodes)

- SES introduced by B.P. Zeigler and J. Rozenblit
- Amongst others extended by research group CEA (Wismar)
- SES is a tree structure
 - Well defined by axioms
 - > Two types of nodes
 - Entity nodes
 - > Descriptive nodes
 - Three types of edges (relations between nodes)
 - > Node/Edge specific attributes

Entity nodes real or imaginary objects

- SES introduced by B.P. Zeigler and J. Rozenblit
- Amongst others extended by research group CEA (Wismar)
- SES is a tree structure
 - Well defined by axioms
 - > Two types of nodes
 - Entity nodes
 - > Descriptive nodes
 - Three types of edges (relations between nodes)
 - Node/Edge specific attributes
 - Global variables, functions, constraints, ...

Entity nodes real or imaginary objects

• Feedback control system

- Feedback control system
- Described by transfer functions

 $G_{Su}(s) = \frac{1}{20 \cdot s + 1}$

- Feedback control system
- Described by transfer functions
- Influenced by disturbances

 $G_{Su}(s) = \frac{1}{20 \cdot s + 1}$ $G_{Sz}(s) = \frac{1}{10 \cdot s + 1}$

Case Study (2)

Two system structure variants

- Without feedforward control: feedforward=0
- With feedforward control: feedforward=1

Case Study (2)

Two system structure variants

- Without feedforward control: feedforward=0
- With feedforward control: feedforward=1
- For every structure variant
 - \rightarrow Different parameter configurations of PID controller

(we consider two)

Case Study (2)

Design objective: Find best control configuration.

• Two system structure variants

- Without feedforward control: feedforward=0
- With feedforward control: feedforward=1
- For every structure variant
 - \rightarrow Different parameter configurations of PID controller

(we consider two)

SES/MB Modeling Approach Deployment

Outlook and Software Tool Support

The pruning and build processes are presented in the supplementary material for Chapter 18.6 in detail. The case study introduced here is revisited, Software tools supporting the SES/MB approach are introduced, the SES developed for the case study is pruned, and models are generated.