Separation of Model and Experimental Frame in Distributed Simulation

The separation of model and simulator – affords the ability to change the underlying simulation engine without any change in the models themselves. There are a number of other advantages, one of which is the support of component re-usability in distributed simulation.

[image: image1.wmf]EF

Model

Simulator

EF’

Model’

Simulator’

EF

Simulator

Model

EF’

Model’

Network Middleware

Network Middleware

a)

b)

Figure 1. a) The difficulty encountered when trying to compose monolithic simulations.

b) the distributed architecture for separating frame, model, and simulator.

The HLA (High Level Architecture) [14] Federation Development and Execution Process (FEDEP) model proposes six steps in an “iterative waterfall software process” to support development of HLA-compliant simulations. The intent of HLA is to enable the construction of compositions, called federations, of existing simulations, called federates. Although, HLA and the FEDEP process provide a protocol and a methodology for such construction, the primary emphasis is on creating the right interfaces for sharing of data among federates rather than on assuring that the federates interact functionally, as models or as test environments, in the intended manner. A major problem is that neither the HLA nor FEDEP can assure the encapsulated models, simulators, and experimentation constituents of federates match up properly for the intended application.

Figure 1a) illustrates the inherent difficulties encountered when trying to develop testing infrastructures in the absence of separation of experimentation, model development and simulation execution concerns. Even assuming the most advanced middleware, incompatibilities at any of the three levels make it difficult for the monolithic boxes in which they reside to play meaningfully with each other. For example, the experimental frames might be incompatible because they were developed for different objectives and/or assuming different levels of resolution. Or the simulators might not be compatible because one uses event-based time advance and the other uses fixed time stepping.

In contrast, Figure 1b) suggests an approach that allows more expeditious plug-and-play. Here, both models and frames are expressed as dynamic elements within a single formalism. The DEVS formalism supports composition of such elements into model-frame pairs and as we have seen, a standard simulation protocol supports efficient execution over existing middleware.

In this case, the common use of the formalism in the simulator obviates simulation incompatibility as an issue. Further, by easily tearing the model-frame pairs apart, detecting incompatibilities at the frame and model levels can be reduced to smaller, more manageable consistency tests. For example, we can check frame consistency using the derivability relation [4]. A necessary condition for the models to form a useful composition is that their frames are derivable from (in the sense of [4]) the frame that characterizes the objectives we want to achieve with the proposed federation.

Separation of frames from models and simulators allows development of experimental frame commodities in both component and composite units to enable more automated and reusable test generators and the application of more powerful analytic, summarization, and visualization capabilities.

� EMBED PowerPoint.Slide.8 ���

[image: image2.wmf]EF

Model

Simulator

EF’

Model’

Simulator’

EF

Simulator

Model

EF’

Model’

Network Middleware

Network Middleware

a)

b)

Figure 1. a) The difficulty encountered when trying to compose monolithic simulations.

b) the distributed architecture for separating frame, model, and simulator.

_1327340450.ppt

EF

Model

Simulator

EF’

Model’

Simulator’

EF

Simulator

Model

EF’

Model’

Network Middleware

Network Middleware

a)

b)

Figure 1. a) The difficulty encountered when trying to compose monolithic simulations.

b) the distributed architecture for separating frame, model, and simulator.

