AutoDEVS

AutoDEVS was created to increase productivity in systems development by automating the life cycle process of a system in all the different phases. The name, AutoDEVS, comes from its support for automation of DEVS model generation. It provides methodologies to develop systems by generating models and testing models from a spreadsheet containing requirements specification that turn into an executing real-time system, see Figure 1.

[image: image1.png]
Figure 1 AutoDEVS Graphical User Interface

AutoDEVS Lifecycle

AutoDEVS process supports the integrated development and testing methodology. The process is iterative allowing return to modify the reference master DEVS-model and the requirement’s specifications. Model continuity minimizes the artifacts that have to be modified as the process proceeds. The design methodology provides a process to transform the requirement’s specifications to a DEVS representation supporting evaluation and recommendations for a feasible design.
As seen in Figure 2, AutoDEVS life cycle process combines system theory, M&S framework, and model-continuity concepts. As illustrated, the tool bifurcates the process into two main streams – system development and test suite development – that converge in the system testing phase. The system development includes the definition of requirements, capture of specifications to map formalized DEVS model components and create a reference master model, and use of model continuity to execute model in the DEVS real-time execution protocol. The test suite development includes development of test models, and execution of test models against the system under test to provide a feasible design from simulation and analysis results.
[image: image2.png]
Figure 2 Integrated Development and Testing Methodology
AutoDEVS
AutoDEVS uses Natural Language (English) Specification of an SES as the preferred means of specifying discrete event systems and defining the structural aspects of the models being developed; see Figure 3 “SESMicroRepresentation” column. This Natural Language is bounded by rules that encompass all the possible interactions related to any message type. These rules also limit the way English language is used in terms of removing ambiguous statements.

[image: image3.png]
Figure 3 AutoDEVS: Requirements Specification

AutoDEVS then uses Finite-Deterministic DEVS Natural Language to describe the behavior aspect of the system being developed. This FDDEVS Natural Language defines the different states, internal and external transitions between the models being developed as described in section 3.3.
See the “FDDEVSRepresentation” column of Figure 3. It contains the behavioral aspects of the system under development. AutoDEVS makes use of this column to automate the development of the behavioral aspects for the DEVS models being created.

After constructing the structural and behavior aspects of the system, AutoDEVS then executes automatic pruning on the models created based on the different specialization identified, see Figure The PES can be transformed into a composition tree, see Figure 5 and eventually synthesized into a simulation model. AutoDEVS also provides the capability to modify the PES created by the tool and then simulate it to validate the models pruned, see Figure 6.

[image: image4.png]
Figure 4 AutoDEVS: Automated PES

[image: image5.png]
Figure 5 AutoDEVS: tree representation of the PES created.

[image: image6.png]
Figure 6 AutoDEVS: PES user selection

After AutoDEVS has created all the models from the derived requirement specifications, it allows the user to automatically create DEVS test models for the system being developed. These test models are created with the objective to verify the correctness of the DEVS models. The test methodology is based on minimal testable I/O pairs restricted to messages, and assuming they are the only automatable observables available for testing. The DEVS test models are in the form of an experimental frame and allow the developer to perform experiments against the System Under Test (SUT). The test engineer analyzes the requirements (from the spreadsheet) and creates the test scenarios which describe the behaviors of the SUT. The requirements are written in minimal testable input/output representation, and the test models are created by applying the model mirroring concept that reverse the minimal testable I/O pairs. Both the minimal testable file and test models are written in XML format and represented by SES, allowing for the transformation between the two XML files. The inputs/output pairs are now represented by three primitive atomic models: holdSend, waitReceive, and waitNotReceive. Since the input/output are in sequential order, only one atomic model is active each time, and the rest of the atomic models are passive. In order to try out these test models against the real system, they are converted to software programming source code, refer to [Mit07] for more details. This testing methodology is still under development and will be available soon in the AutoDEVS tool.

Finally, the AutoDEVS tool provides an interface to the FDDEVS tool, SESBuilder, and DEVSJAVA SimView. Refer to Section 4 for the description of FDDEVS and SESBuilder tools. The DEVSJAVA SimView is a program included in the DEVSJAVA framework to view and check that all the models and couplings are built as expected. In addition, SimView allows the developers to run, observe and evaluate the real-time execution of the system under development, see Figure 7.

[image: image7.png]
Figure 7 DEVSJAVA SimView running system under development

As seen in Figure 7, SimView allows the user to stop, run and restart the execution of the model being simulated. This helps the developers detect flaws easily when simulating and testing the system, as it shows the transactions and state transitions for each of the models that are being executed. SimView provides the flexibility to choose and run the desired model and simulate different models without having to reopen the SimView application. In addition, DEVSJAVA SimView allows the developer to simulate hierarchical models. These models are coupled models with components that may be atomic or coupled models that constitute a part of the entire system. This permits to simplify the scope of testing and find problems at different stages of the development, i.e. execute unit simulation to analyze models more concretely.

One very useful feature of the AutoDEVS tool is that it displays the model’s debugging messages into an execution log textbox which is integrated in the tool. This permits the developer to quickly debug the system and resolve any bugs encountered during simulation or just monitor the application in execution. SimView also provides the capability to adjust the simulation speed of the models by increasing or decreasing the execution time by a scale factor. For example, a scale factor equals 1 means the simulation will run at the same speed as a wall clock; time scale factor equals to 0.5 means the simulation will run twice as fast as the wall clock, and so on. This allows the designer to analyze the data to determine if the system under test fulfills the logical behavior as desired.

AutoDEVS & Model Continuity

AutoDEVS is a software development methodology that supports model continuity for distributed real-time software development. This methodology is based on the DEVS modeling and simulation framework. Corresponding to the general “Design-Test-Execute” development procedure, this tool provides a “Modeling-Simulation-Execution” process which includes several stages to develop real-time software. During these stages, a model’s continuity is maintained because the same control models that are created will be tested by simulation methods and then deployed to the target system for execution.

Next, is a description of the different stages that AutoDEVS methodology utilizes to develop systems showing model continuity. This description takes advantage of an Agent Development System simple example. The first stage of the AutoDEVS methodology is defining user requirements for the Agent Development System:

[image: image8.png]
Figure 8 Agent Development Example: Define Requirements

As seen in Figure 8, the requirements for the new system are collected and organized in spreadsheet table, i.e. “RequirementText” column.
The second stage is describing the structural aspects for each of the requirements of the Agent Development System, i.e. fill the “SESMicroRepresentation” column of the spreadsheet. The third stage is describing the behavioral aspects for each of the requirements, i.e. fill the “FDDEVSRepresentation” column of the spreadsheet. The fourth stage is defining the multi-aspect coupling for the coupled models which automates the coupling generation for multi-aspect models. This is defined in the “MultiCouplingTest” column of the spreadsheet, i.e. agent input/output coupling. The fifth stage is running the AutoDEVS tool to capture the spreadsheet data, i.e. agentDevelop.xls, see Figure 9.

[image: image9.png]
Figure 9 Agent Development Example: Capture Spreadsheet Data

Notice that the user needs to set the folder and spreadsheet file to be captured in the AutoDEVS tool, i.e. “Set Folder” and “Select File” buttons. In addition, notice that subsequent to capturing the data from the spreadsheet, AutoDEVS encodes the captured data into an XML schema/document type definition (XSD or DTD), i.e. Sheet1agentDevelopRowsSchema.xsd, ses.dtd. The sixth stage is to generate FDDEVS models based on the schema type definition and the captured XML data from previous stage, i.e. behavioral aspects of the Agent Development System (FDDEVSRepresentation column).

[image: image10.png]
Figure 10 Agent Development Example: Generate FDDEVS
As seen in Figure 10, DEVS java models are automatically generated, including an XML representation of those models, i.e. observer.java, observer.xml. Based on the MicroSESRepresentation column defined in the spreadsheet, the seventh stage is to add the structural aspects on the DEVS models created in the previous stage. During this stage a SES representation of the models is created and parsed into an XML file, i.e. agentDevelopagentCoupledModsSeS.xml. Notice that this file could serve to see the SES representation as a tree view, see Figure 11. In addition, an automatic PES that represents the logically possible set state descriptions consistent with the SES is created, i.e. agenDevCoupModInst.xml.

[image: image11.png]
Figure 11 Agent Development Example: SES Tree View

The eighth stage is to run the PES that was automatically created in the previous stage, i.e. Transform PEStoDEVS. During this stage the specialized models are created and the DEVS models are updated with the corresponding structural aspects, i.e. PES transformed into DEVSJAVA models. This PES can also be modified by the developer to create his own pruning and analyze the models of interest. The AutoDEVS tool allows choosing the PES desired and then run it using the tool, as shown in Figure 12.

[image: image12.png]
Figure 12 Agent Development Example: Choosing a PES

The ninth stage is to create a set of test models to validate the system under development, see Figure 16.

[image: image13.png]
Figure 13 Agent Development Example: Generate Test Models

As seen in Figure 13, AutoDEVS lets the developer choose the test models to create from a list given. As described previously, these test models are based on minimal testable I/O pairs restricted to messages and are created with the objective to verify the correctness of the DEVS models. This feature is being developed and will be available in the near future.

The tenth stage is to verify the models created in the FDDEVS Models and SES Builder DEVSJAVA SimView applications. Then modify the models accordingly to the desired needs and start simulation, see Figure 15.

[image: image14.png]
Figure 14 Agent Development Example: Verifying models in SES, FDDEVS, and SimView

[image: image15.png]
Figure 15 Agent Development Example: Running models in SimView

Mapping AutoDEVS-generated Models to DEVS/SOA
DEVS/SOA helps the developer to create transparent distributed simulation. It exploits model continuity by taking the generated AutoDEVS models and allowing the upload, compilation and simulation of the developed models in a distributed way among different available servers. AutoDEVS and DEVS/SOA tools minimize the number of modifications required to the developed source code to make possible the distributed simulation (see [Sal08] for details). By distributing the simulation of the system developed in different machines, the memory requirements on any single system can be substantially smaller than the memory used in a single-workstation simulation. The developer needs to consider optimizing the transactions between the different workstations to allow the overall execution time of the simulation to be at least as fast as the original single-workstation simulation. Networking or distributing the simulation of the generated AutoDEVS models using the DEVS/SOA tool encourages improving the speed of highly parallelizable tasks by distributing pieces of the system across many computers that together form a distributed computing simulation system.
Furthermore, AutoDEVS together with DEVS/SOA provide an infrastructure to implement structural and hierarchical real-time distributed systems. In particular DEVS/SOA supports the fourth step where all the models are deployed to their target platforms and tested in the real physical environment. In this case, the target platforms and physical environment are the SOA services and underlying network infrastructure in which DEVS is implemented. The user can determine the simulation mode of a model by selecting the simulation protocol to use, whether logical or real-time, without changing the model itself. When executing under the real-time simulation model, the model effectively becomes an executing web service that operates in real-time and can be distributed to geographically dispersed nodes as desire. An example application supports negotiation.
