DEVS Simulators

DEVSJAVA, ADEVS, and other DEVS simulation engines enable DEVS simulation in the same way that a calculator enables arithmetic calculations. These engines, or simulators as we refer to them, adhere to the rules that govern simulation of DEVS models and are specified in the Abstract DEVS Simulator..

The analogy between DEVS simulation and calculation is spelled out more fully in the DEVS Calculator Analogy.
In its computational realization, the M&S framework based on the DEVS formalism is implemented in various object oriented environments. Using Unified Modeling Language (UML) we can represent the framework as a set of classes and relations as illustrated in Figures 1 and 2.

[image: image1.emf]classes

construction

mechanisms

relationships

constraints

create classes to

satisfy use cases

M&S

Framework

classes

interpretation

as

software code

(e.g. Java)

instances of classes

constitute an

implemented M&S

environment

Use Cases

UML

Figure 1: M&S Framework formulated within UML

Various implementations support different subsets of the classes and relations [OMG].

[image: image2.emf]models

simulators

Source

systems

Experimental

& Pragmatic

Frames

ontologies

EF

applicability

model

EF

validity

model

Source

system

EF

abstraction

model

model

simulator

correctness

model

Pragmatic

Frame

applicability

ontology

model

synthesizes

ontology

Figure 2: M&S Framework Classes and Relations in a UML representation

Some DEVS simulation engines and their environments are:

· DEVSJAVA modeling and Simulation environment for developing DEVS-based models. The software is written in Java and supports parallel execution on a uni-processor. It supports higher-level, application specific modeling. Models in DEVSJAVA can also be readily mapped to DEVS/SOA for distributed execution in combined logical/real-time settings. The DEVS-Suite Extension is available at SourceForge. Developed by Hessam Sarjoughian (Arizona State University, U.S.A.) and Bernard Zeigler (University of Arizona, U.S.A.).
· ADEVS is a C++ library for developing discrete event simulations based on the Parallel DEVS and DSDEVS formalisms. It includes support for standard, sequential simulation and conservative, parallel simulation on shared memory machines with POSIX threads available on WareSeeker. Developed by Jim Nutaro (University of Arizona, and ORNL.).

· DEVS/SOA is an implementation of DEVS within a Service Oriented Architecture (SOA) environment [MIT07g, DUN07, MIT07f]. Several discrete-event simulation engines [xMAT, xOMN, xNS2, xDEVS] are available that can be used in simulating interaction in a heterogeneous mixture of independent systems. The advantage of DEVS is its effective mathematical representation and its support to distributed simulation using middleware such as DoD’s High Level Architecture (HLA) [xHLA].
· CD++ is a general toolkit written in C++, which allows the definition of DEVS and Cell-DEVS models. DEVS coupled models and Cell-DEVS models can be defined using a high level specification language. Different versions include Real-Time, Parallel and centralized simulators.. Developed by Gabriel Wainer and his students (Carleton University, Canada; Universidad de Buenos Aires, Argentina).
A more complete list is provided by the DEVS Standardization Group and the DEVS Wikipedia entry.

_1247044681.ppt

create classes to

satisfy use cases

M&S

Framework

classes

interpretation

as

software code

(e.g. Java)

instances of classes

constitute an

implemented M&S

environment

Use Cases

UML

classes

construction mechanisms

relationships

constraints

*

_1247045435.ppt

models

simulators

Source

systems

Experimental

& Pragmatic

Frames

ontologies

EF

applicability

model

EF

validity

model

Source

system

EF

abstraction

model

model

simulator

correctness

model

Pragmatic

 Frame

applicability

ontology

model

synthesizes

ontology

*

