FDDEVS Inverses for Test Frames

[image: image3.emf]1

FDDEVSspecification

TESTFrame

Specification

DEVSJAVAimplementa-

tion

TESTFrame

Implementa-tion

In the FDDEVS integrated development methodology test frames are automatically generated from the FDDEVS natural language specifications as illustrated in the figure. The process starts with specification of FDDEVS models with the FDDEVS Builder. From there it branches into the development path and the testing path. In the testing path, a family of experimental frames, called test frames, is generated from the FDDEVS specification using the concept of model inverse.

[image: image4.emf]s

initial

s

0

s

1

taxy

s

initial

s

0

s

1

xy.9*ta

s

initial

1.1*ta

notReceivey

Roughly, an inverse of a model is another model that when coupled to the original, induces it to execute its behavior maintaining a state-to-state correspondence. For FDDEVS, the set of inverses is a set of FDDEVS such that when it each is coupled to the FDDEVS, and started in a corresponding state, will maintain state correspondence for all subsequent interaction. As illustrated in the figure, each inverse represents a particular choice for injecting an input or waiting for an output for each of the states in which such a decision is needed. Consider an initial state, Sinitial for which either an external event, x can arrive, or a time advance ,ta can expire. There are two choices leading to different inverses. For the first, we generate an input, x within the interval <0,ta>, e.g., at 0.9 ta. For the other, we wait for the output, y generated from Sinitial to arrive within the just mentioned time interval. In either case, it the expected transition happens correctly, the inverse will go into a state corresponding to the one specified. In the second case, if the time advance expires without receiving the expected input, the inverse reports that a failure has occurred. Now if the original FDDEVS has n states, and m inputs, then there are potentially, (m+1)n inverses. This is because at each state there is a choice of m inputs to inject to the model or to inject none (i.e., waiting instead for the model’s output). Further, each of these choices can be made at each of n states independently so the choice sets multiply. In practice, there are often far fewer possibilities since the inputs and outputs may be sparsely distributed among the states.

In any case, the set of inverses is finite and provides a battery of test frames that is useful in testing: Assume there is a flaw in the original FDDEVS implementation. Then in some state, it does not perform its external transition, internal transition, output, or time advance function correctly. If the output is incorrect, the inverse will not receive the input it expects and will report a failure. If the FDDEVS under test fails to execute its state transition or time advance correctly then the state correspondence with the inverse will be violated, i.e., the model and its inverse will not be in corresponding states. Although this discrepancy need not show up immediately, this will eventually show up in subsequent interaction, either an incorrect output, either in its value, or in its timing (this assumes that the model is in its reduced form in which no two states can exhibit the same behavior of the long run. See Theory of Modeling and Simulation.)
The inverse is the structural counterpart of the mirror image approach to generating test frames, where the latter is based on input/output behavior. In the figure, whenever the system under test (SUT) generates outputs the test model should expect to receive corresponding inputs; conversely, when the SUT expects to receive an input, the test model should generate and inject it.
[image: image1.png]
As illustrated below, holdSend, waitReceive, and waitNotReceive message primitives can implement these requirements.
[image: image2.png]
Since the inverses of an FDDEVS are FDDEVS models, they can also be implemented by message primitives using the message primitive representation. Such an implementation allows the test frame to send and receive messages with data content to systems that are not limited to string values. Thus, the FDDEVS and the mirror imaging approach are alternatives for generating the same class of test frames. The FDDEV-based approach is more desirable if you have the state-level description of system processing to formulate as an FDDEVS because it can generate a complete set of inverses and associated tests. If all you have are behavior samples of the system, then direct derivation of mirror images is the fall-back position.

� EMBED PowerPoint.Slide.12 ���

� EMBED PowerPoint.Slide.12 ���

[image: image5.emf]s

initial

s

0

s

1

taxy

s

initial

s

0

s

1

xy.9*ta

s

initial

1.1*ta

notReceivey

[image: image6.emf]1

FDDEVSspecification

TESTFrame

Specification

DEVSJAVAimplementa-

tion

TESTFrame

Implementa-tion

1

FDDEVS

specification

TEST

Frame

Specification

DEVSJAVA

implementa-

tion

TEST

Frame

Implementa-

tion

image1.png

image2.png

image3.png

sinitial

s0

s1

ta

x

y

sinitial

s0

s1

x

y

.9*ta

sinitial

1.1*ta

notReceive

y

