DEVS Representation by Message Handling Primitives

[image: image3.png]g 31

companes 3y
Companat wati the

Simulation of DEVS stormic madel imoives representing sachsate by 3 calcton of
components that implement 1 particlar mput, tte ranstion, and autput
functionsiny.

One way that FDDEVS models serve as skeletons for expansion to full-fledged DEVS models is by mapping into coupled models of message handling primitives. For example, a test model is in the form of an experimental frame in which the holdSend model is a generator and the waitReceive or waitNotReceive is the acceptor. These atomic models are coupled together to form a basic test model. Each atomic model and coupled model has two input ports: start and in_Jmsg, and two output ports: out_Jmsg and pass.

[image: image4.png][y

—

As the Figure 2 shows, to represent an FDDEVS model, its states are mapped to a set of message primitive models. Simulation of an FDDEVS atomic model involves representing each state by a collection of components that implement its particular input, state transition, and output functionality. Each state is represented by a collection of components that represent all its functionality. To implement a state transition, all the components representing the current state are deactivated by the active components within the same collection. A component in the current group also activates the starting component associated with target state.. As shown in Figure 3, the mapping represents a FDDEVS state by using a waitReceive model for each message received in the external transition function and a holdSend for each transition in the internal transition function.
[image: image5.png]s o gmsg o s

o

holdSend

n come
one] holdSend [
T st oct s
— s
T e waitReey [=

Figure 2 - Mapping Concept

Figure 3 – Mapping States to holdSend and waitReceive primitives
The mapping algorithm is described as follows:
1. Assign collections, C[s] of holdSend and waitReceives to each state, s

2. There is one holdSend for the internal transition and

3. a waitReceive for each of the inputs* received by the state

4. Assign couplings for each state, s from its collection C[s] to the collections of other states such that,

5. If there is an internal transition from s to s’ then couple the outStart port of the holdSend in C[s] to the inStart ports of all components in C[s’].

6. If there is an external transition from s to s’ with input x, then couple the outStart port of the waitReceive associated with x to the inStart ports of all components in C[s’]

7. Assign external input couplings such that the waitReceives in every collection receive a coupling on their inMessage port from the inMessage port of the coupled model.

8. Assign external output couplings such that the holdSend in every collection project a coupling from its outMessage port to the outMessage port of the coupled model.

9. Assign an external input coupling from the inStart port of the coupled model to the inStart port of each component in the collection for the initial state.

* Inputs that are ignored in the state are not assigned a waitReceive
Example: Implementing a waitNotReceive FDDEVS

[image: image1.png]waitNotReceive(ta,x): after
receiving a startinput, It
watches for aninput with
contentx, on its inMessage
port. If the inputis not
receivedin the duration ta,
ssues a pass, otherwise
itissues a fail.

Passive

Start

Clpassive]

1
1
1
1 waitReceive(e Start)
1

Clwail]

holdSend(ta,outPass)

1
C[Se”* waitReceiva{ta,x)

holdSendo,outFail) f—a U

Example: Implement Multiple Input Reception
[image: image2.png]y1

Received

Forlnput

Wait

y2

x1

Start

x2

ClWaitForlnput]

waitReceive(e,x1)

T).(M x2)

(===== | [
1 ClReceived1] \ I
: bogg !

holdsend(0,y1) | ! !
1 >
1 1 1
L] L

- — —Clpassive] _

_C[RecelvedZ]

holdsend(0,y2)

