Message Handling Primitives

Basic operations in networked communications are to send message and receive messages. These operations can be represented by three atomic models: holdSend, waitReceive, and waitNotReceive. holdSend sends a message after a specified hold time expires. The receive message operation is represented by two atomic models: waitReceive expects to receive an incoming message of a given type in a specified time interval, while waitNotReceive expects not to receive a message of a given type within a given time interval.
The state diagrams and FDDEVS specifications of these primitives are described as follows:

[image: image3.png]
	 hold in sendMessage for time 10 !

 after sendMessage then output Message !

 when in passive and receive Activate go to sendMessage !

 passivate in passive !

 to start passivate in passive !

 from sendMessage go to passive !

[image: image1.png]
	to start passivate in passive !

when in passive and receive Activate go to WaitForMessage !

hold in WaitForMessage for time 12 !

after WaitForMessage then output FAIL !

when in WaitForMessage and receive Message go to sendPASS !

from WaitForMessage go to passive !

hold in sendPASS for time 0 then output PASS and go to passive !

[image: image2.png]
	to start passivate in passive !

when in passive and receive Activate go to WaitForMessage !

hold in WaitForMessage for time 12 !

after WaitForMessage then output SUCCEED !

when in WaitForMessage and receive Message go to sendFAIL !

from WaitForMessage go to passive !

hold in sendFAIL for time 0 then output FAIL and go to passive !

 These primitives contain state variables, receive inputs and generate outputs that can represent classes of real world messages processing systems such as the Link 16, the tactical data link message standard.
A class of DEVS message processing models can be realized as coupled models of these primitives and these models constitute the basis for FDDEVS-based testing.
