DEVS Integrated Development and Testing Methodology

[image: image1.emf]Our approach to development of an integrated development and test environment is based on the model-based approach to software development and testing. The Unified Modeling Language (UML) has been widely adopted by the industry as the preferred means of architecture specification due to its multi-model expressive power. However, UML constructs are not sufficient to specify the complete set of System of System (SoS) engineering processes. A more extensive architectural framework is needed for better organization and management of SoS artifacts.

	

	

Frameworks, such as Wymore’s system theory (92), the Department of Defense Architecture Framework (DoDAF 2009), and Zachman’s enterprise architecture (O’Rourke 2003), are examples that may use UML as a means of presenting the concepts of SoS engineering. The approach combines systems theory, M&S framework and model-based software engineering to obtain an integrated life-cycle depicted in Figure 1.
The process has the following characteristics:
· Behavior requirements at lower levels of system specification: The hierarchy of system specification offers well-characterized levels at which requirements for system behavior can be stated. The process is essentially iterative and leads to increasingly rigorous formulation resulting from the formalization in subsequent phases.

· Model structures at higher levels of system specification: The formalized behavior requirements are then transformed to the chosen model implementations, e.g., DEVS-based transformation in C++, Java, C#, and others (Kim et al. 2009, Wainer 2002, Janousek, V. and Kironsky 2006).

· Simulation execution: The model base, which may be stored in the Model Repository, is fed to the simulation engine. It is important to state the fact that separating the model from the underlying simulator is necessary to allow independent development of each. Many legacy systems have both the model and the simulator tightly coupled to each other which restrict their evolution. DEVS categorically separates the model from the simulator for the same simple reason.

· Real-time execution: The simulation can be made executable in real-time mode (Kim 1997, Cho 2003); and, in conjunction with Model-Continuity principles, the model itself becomes the deployed code (Hu and Zeigler 2005).
· Test models/federations: Branching in the lower-path of the bifurcated process, the formalized models give way to test models which can be developed at the atomic level or at the coupled level where they become federations. It also leads to the development of experiments and test cases required to test the system specifications. DEVS categorically aids the development of experimental frames at this step of development of the test suite.

· Verification and validation: The simulation provides the basis for correct implementation of the system specifications over a wide range of execution platforms, and the test suite provides the basis for testing such implementations in a suitable test infrastructure. Both of these phases of systems engineering come together in the Verification and Validation (V&V) phase (Hwang and Zeigler 2009).

FDDEVS-based integrated development and testing is supported with automation based on FDDEVS.

[image: image2.emf]Real

Real

-

-

time

time

execution

execution

Behavior

Requirements

at lower levels

of System

Specification

Model Structures

at higher levels of

System

Specification

Verification

Simulation

execution

Test Models/

Federations

Model

Continuity

Experimental

Frames

System

Theory

Figure 1: Integrated System Development & Testing Life-cycle Process

The formal rigor and versatility of DEVS allows it to support development of a wide range of domain-specific models. Tag Gon Kim (Kim and Kim 2005) summarized such a simulation modeling development methodology. The methodology recognizes the necessity for M&S engineers in addition to the domain and computational platform engineers traditionally included in development of M&S projects for specific applications. The methodology views DEVS as supporting the role of the M&S Engineer to specify what to do and when to do it for the various actions of the model components. The Domain engineer then determines how to do these actions in collaboration with the M&S Engineer, while the Computational Platform Engineer works on the software implementation infrastructure.
Figure 2a. M&S Development Methodology Collaborators

Figure 2b. Collaboration between M&S and Computational Engineers
This methodology is supported by the AutoDEVS (Salas 2009) environment, an ontology-based tool set that automates the transformation of user-friendly FDDEVS and system structure specifications into simulation models and experimental frames to test them.
[image: image3.emf]1

� EMBED PowerPoint.Slide.12 ���

� EMBED PowerPoint.Slide.12 ���

� EMBED PowerPoint.Slide.12 ���

[image: image4.emf]Real

Real

-

-

time

time

execution

execution

Behavior

Requirements

at lower levels

of System

Specification

Model Structures

at higher levels of

System

Specification

Verification

Simulation

execution

Test Models/

Federations

Model

Continuity

Experimental

Frames

System

Theory

Figure 1: Integrated System Development & Testing Life-cycle Process

[image: image5.emf][image: image6.emf]1

1

image1.png

- Simulation algorithm
- Field experience - Simulator interop.
- Engineering/ - Statistical analysis

~Programming
- S/W engineering
-GIS,DB
- Networking et

image1.png

DEVS Specification: what to do & when

ext_trans(s, e, x) 33 DEVS External Trans function
object-insert(s, x);

Object Specification: how to do

Object Ext. Trans. Operation

int_trans(s) 33 DEVS Internal Trans function
object-delete(s);

time_advance(s)
ifis| >1
ta = sending_time;
else

ta=w;

33 DEVS Time advanci ion

out_function(s) 33
ifis| >1

y=out;

DEVS Output function

Done by M&S Engineer

call methods

\

object-insert(s, x)
insert x in S with an
)propriate queueing
iscipline employed
in domain;

(eg: FIFO, LIFO, PriQ etc.,)

™ Object Int. Trans. Operation

object-delete(s)
remove first ele in S;

Done by Domain Engineer

Real

Real

-

-

time

time

execution

execution

Behavior

Requirements

at lower levels

of System

Specification

Model Structures

at higher levels of

System

Specification

Verification

Simulation

execution

Test Models/

Federations

Model

Continuity

Experimental

Frames

System

Theory

Figure 1: Integrated System Development & Testing Life-cycle Process

