DEVS/SOA

Service Oriented Architecture (SOA) is a methodology with which a new application is created through integrating existing and independent processes which are distributed over networks [1].
[image: image1.emf]Service

Provider

Discovery

Agent

Service

Requestor

WSDLWSDL

SOAP

UDDI

publish

find

bind

serverclient

Figure 1. Generic Web Service architecture

SOA considers a message as an important unit of communication so can be regarded as “message-oriented” services. One of the implementations of the SOA concept is web services which is a middleware system for communicating between a client and a server over a network with XML messages called Simple Object Access Protocol (SOAP) [15]. Web services architecture [16] is based on exchanging messages, describing web services, and publishing and discovering web service descriptions. Web services are described by Web Services Description Language (WSDL) [17] which is XML-based language providing the required information, such as message types, signatures of services, and a location of services, for clients to consume the services. Publishing and discovering web service descriptions are managed by Universal Description Discover and Integration (UDDI) [18] which is a platform-independent and XML style registry

DEVS/SOA is a prototype simulation framework that has been implemented using Service Oriented Architecture (SOA) technology. The central feature of DEVS/SOA is that supports executing the DEVS simulator as a web service. The development of this framework helps to solve large-scale problems and guarantees interoperability among different networked systems and specifically DEVS-validated models. DEVS/SOA makes the DEVS simulation process transparent in the model-design cycle, allowing the modeler not to be concerned with the simulator compatibility or any platform issues as in earlier developments like DEVS/C++, DEVSJAVA, DEVS/RMI, and DEVS/CORBA. With this Simulation Service platform the designer is able to execute the model over the Internet through web services, using SOA as the middleware. This framework is able to execute DEVSJAVA models, and is extensible to other DEVS simulation engines.

A DEVS/SOA client takes the DEVS models package and through the dedicated servers hosting simulation services, it performs the following operations:

1. Upload the models to specific IP locations

2. Run-time compile at respective sites

3. Simulate the coupled-model

4. Receive the simulation output at client’s site

The DEVS/SOA client as shown in Figure 1 below operates in the following sequential manner:
1. The user selects the DEVS package folder at his machine

2. The top-level coupled model is selected as shown in Figure 1
3. Various available servers are selected. Any number of available servers can be selected.
4. The user then uploads the model by clicking the Upload button. The models are distributed among various chosen servers as specified by the user.
5. The user then compiles the models by clicking the Compile button at server’s end

6. Finally, Simulate button is pressed to execute the simulation using the Simulation service hosted by these services.

7. Once the simulation is over, the console output window displays the aggregated simulation logs from various servers at the client’s end.
[image: image2.png]
Figure 2 GUI snapshot of DEVS/SOA client hosting distributed simulation

In accordance with the model continuity requirement, both logical time (time-managed) and real-time discrete event simulation are supported by DEVS/SOA. The user can determine the simulation mode of a model by selecting which simulation protocol to be used, whether logical or real-time, without changing the model itself. For example, operating in real-time mode, DEVS/SOA can support massively parallel processing of massive amounts of data as well as massively distributed sensor nets.
[image: image3.png]
_1266240267.vsd
�

�

WSDL

WSDL

SOAP

UDDI

publish

find

bind

server

client

Service
Provider

