Soft Computing in DEVS

Soft computing is a conglomeration of tools for intelligence stemming from approximate reasoning (fuzzy logic), learning (neural network, stochastic learning automaton) and optimization (genetic algorithms, genetic programming). DEVS provides a robust and generic environment for modeling and simulation applications employing single workstation, distributed, and real-time platforms. Fusing these two concepts together yields what is called IDEVS (Intelligent DEVS), an extension that is available within a virtual laboratory, called V-Lab. Using the DEVS environment, V-Lab defines an appropriate structure in which to organize the elements of DEVS for a distributed agent based modeling and simulation. It separates the main components into different categories and defines the logical structure in which they communicate. It also provides the critical objects needed to control the flow of time and the flow of messages.  Developed by the Autonomous Control Engineering (ACE) Center, University of New Mexico, under NASA sponsorship, V-Lab and IDEVS are targeted to development of small robotic rovers that can form cooperative teams in [image: image2.wmf]receptive
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exploration of new terrains such as found on Mars. 

V-Lab demonstrates the ability of the DEVS formalism to support the design of soft-computing intelligent behavior mechanisms that control continuous motion of vehicles over challenging terrain.   V-Lab also demonstrates the benefits of working within the DEVS framework for hierarchical, modular composition and separation of model and simulation layers to provide reusable components for distributed agent simulation. 
DEVS is a natural modeling medium to express neural processing. Figure 1 depicts an example of a simple neuron model, the Fire-Once Neuron. As its name implies, this atomic model waits for a Pulse, and upon receiving one, enters the firing state to generate an output Pulse. Subsequent inputs that arrive while in the firing state, and in the refractory state, cannot cause a second pulse to be generated. Although the model has a very simple behavior, networks of such neurons can exhibit sophisticated behavior such as solving shortest path problem.

To show how this can be the case, consider a small network of Fire-Once Neurons, which is a DEVS coupled model, as illustrated in Figure 2.  Here, a  pulse emitted from the generator explores two paths concurrently to reach the final neuron [image: image3.png]Pulse
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Figure 2. Small network of fire-once neurons

Depending on the summed firing delays along each path, a pulse emerging from one or the other will arrive first to the final neuron, the other will be shut out (recall the Fire-Once behavior) and prevented from continuing. In general, the clock time when a pulse first arrives to a neuron  represents the shortest time to reach it.  So if nodes and link distances  are mapped to neurons and firing times, then the path taken by a pulse represents the shortest path of an associated digraph. This method turns out to be isomorphic to the well known Dikstra shortest path algorithm.
FireOnce Neurons exhibit such first-to-arrive behavior as just illustrated.  However, they do not record the sender of the first pulse to arrive as would be required to reconstruct the minimum time path. This would be done by retracing the path of earliest firings from the last neuron to fire to the first one to fire. The simple components employed in location-based activity sensing exhibit neuron-like behavior with additional capability to remember the source of input for later recall.
Real-world DEVS Intelligence Application Example
Sachem, an extensive large-scale real-time system  uses DEVS as an overall framework for knowledge-based control of steel production [9]. Sachem was initially developed to monitor and to diagnose the blast furnaces of Usinor, a company in the Arcelor group, the world’s largest producer of steel products. The original objective of Usinor was to save up to 1 euro per ton of pig iron [9]. Currently, Sachem saves approx. 1.6 euro per ton. and with six blast furnaces equipped with a Sachem system, Arcelor saves millions of euros annually.  One the main hurdles overcome by such a system is the acquisition and the representation of the perception knowledge of the experts who monitor and diagnose the blast furnace. Such perception knowledge is sub-symbolic, meaning that experts are unable to use words to describe their own cognitive processes. Furthermore, such knowledge concerns temporal and spatial evolution of processes and humans have difficulty describing such dynamic processes with the needed fidelity. It is therefore very difficult to model the reasoning of a control process expert.  Conventional artificial intelligence approaches are inadequate since they do not recognize the importance of temporal perception and discrete event processing in dealing with complex dynamical systems. The lack of mathematical models  of the blast furnace dynamic also inhibits subjecting it to conventional theories of process control.

The basic hypothesis underlying Sachem’s design is that experts reason mainly directly on state transitions rather than on the state of the process. Because state transitions can be represented by discrete events [6,11], the knowledge to control the blast furnace can be represented with propositions about discrete events and temporal windows that constrain the time of the events.
As illustrated in Figure 2, the basis of Sachem’s DEVS-based perception is the recognition or successively more abstract classes of discrete events, called signal events, signal phenomena and process phenomena. The discrete event paradigm allows the design of this multi-layered self-similar discrete event abstraction process. At the lowest level, quantization is employed to generate discrete event segments from continuous trajectories coming from thousands of spatially arrayed temperature, pressure and other sensors. Sachem continuously analyzes the flow of discrete events through the three levels of abstraction. The transition from one level of abstraction to the next is based on a similar event recognition process called signature detection.  Since the same discrete event processing underlies each level of abstraction, a unified
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Figure 2  The continuous flow of Sachem’s DEVS-based perception events.

architecture can be developed which supplies essentially the same services for signature detection and reasoning at the different abstraction levels.   The perception function of Sachem outputs its process phenomena events to a diagnosis function that analyzes the continuous flow of phenomena in order to recognize dangerous behaviors, to identify the hypothetical causes that explain the recognized behavior, and to issue warnings and advice to human operators on undesirable states that the process that could potentially reach in the future.

One of the advantages of the discrete event paradigm is compactness. For example, one year of blast furnace generates approximately 30,000 process phenomena. This results from the discrete event abstraction of a database containing the blast furnace raw data that is 50,000 this size. As a consequence, for the first time in the history of blast furnace study, it is possible to analyze the behavior of blast furnaces over years at such a high level of detail.

The success that Sachem has achieved is the result of a sustained effort with substantial investments in human and software-intensive system resources. A conceptual model of the knowledge specifies the entire system. This model contains 25,000 objects for 33 goals, 27 tasks, 75 inference structures, 3200 concepts and 2000 relations.  The Sachem knowledge bases contain more than 1060 classes of objects, 1100 first order logic rules and 140 event report types. The total software volume represents approximately 400,000 lines of code.  This represents 14 man-years of work for a team of 6 knowledge engineers and 12 experts during a period of 3 years.

Sachem developers are currently researching an approach to assist the expert in discovering signatures at the process phenomena abstraction level. Their approach is based on a Markov process representation of a discrete event flow. Integrated in a Java environment called the “ELP Lab”, a set of tools has been developed to compute correlations between the beginnings of process phenomena. The ELP language is a high-level knowledge representation language of signatures [10]. The ELP signatures are operationalized using  the DEVS formalism: the event reports are translated into DEVS models that a DEVS simulator uses in order to recognize the discrete events sequences that satisfy the signatures. The goal is to develop methods to infer an ELP signature from a set of significant sequences.
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