Activity

Activity: the missing concept
[image: image24.wmf]Quantizer

Control

Simulator

Simulator

provides

activity

feedback to

controller

Controller can

adjust parameters

of the model such

as quantum size

and

timeToDeactivate

Figure 4. Activity feedback to a controller

Energy is the general concept that represents the physical cost of action in the real world.
Information is the general concept that enables us to model how systems decide on, manage, and control their actions. As in Figure 1 a), information and energy are two key concepts whose interaction is well understood in the following common sense manner: On one hand, information processing takes energy, On the other hand, getting that energy requires information processing to find and consume energy-bearing resources. Systems that sustain themselves in the real world must somehow balance these quantities but without a more rigorous formulation of this relationship it is difficult to study this balance in a general way. We need a more formal concept of activity (Figure 1 b) enable us to link energy and information.
One of the unique properties of DEVS is the intrinsic ability of the simulator to be aware of, and therefore, count internal and external state transitions in the model components. Let us measure information processing in a model by such state-to-state transition counts over some time interval, and call this the activity measure. Intuitively, components with higher counts over this interval are more actively involved in the information processing than those with low counts. This makes the connection between activity and information. To make the connection with energy, we need to link transition counts with the actual cost of information processing in terms of energy
 It would be nice to postulate that every state transition consumes the same amount energy, since then the number of transitions relates directly to energy consumed. But for reasons we discuss later, this is not a practical option. Instead, we allow the modeler to define a weighted transition mapping and consider this definition to be part of the model itself. In other words, the declaration concerning relative weights of state transitions is a property of a model that enables a modeler to abstract the underlying details of energy consumption and directly link energy consumption to information processing. As is usual in modeling methodology, the level of detail required to adequately describe the transition weighting depends on the modeler’s objectives. For example, if the objective is to manage energy at course levels such as low, medium, and high, then fairly coarse representation of the transition weights may well be meaningful. “Activity” in this sense is an abstraction less concerned with the details of the function of each process, which DEVS can model at any level of detail, than with the effort expended by the individual and collective processes and their relationship to the information processing being done. This means that complex and disparate information processes can be described in mathematical detail using a common approach with a common metric.
The semantics of weighting is formalized as follows:
The internal transition weighting function:

[image: image1.wmf]:

whenever

()

()

int

intintint

wtSI

ss

nnwts

d

®

®

Þ

=+

The average activity accumulated over an interval (t,t’) from internal transitions:

[image: image2.wmf](,)

int

int

n

Att

tt

¢

=

¢

-

The external transition weighting function:

[image: image3.wmf]:

whenever

(,,)

(,,)

ext

extextext

wtQXI

ssex

nnwtsex

d

´®

®

=+

The average activity accumulated over an interval (t,t’) from external transitions:

[image: image4.wmf](,)

ext

ext

n

Att

tt

¢

=

¢

-

The average activity accumulated over an interval (t,t’) from all transitions:

[image: image5.wmf](,)(,)(,)

intext

AttAttAtt

¢¢¢

=+

(Note: we can add a weighting for confluent transitions if needed.)
Default definitions set the weighting functions to unity:

[image: image6.wmf]()(,,)1

intext

wswsex

==

Under these conditions, transitions are counted over a period of time and the average activity over the interval is number of transitions divided by the interval length.
Another common possibility is to set

[image: image7.wmf]()int(())

(,,)int()

int

ext

wstas

wsexe

=

=

where the weight of a transition is proportional to the time spent in the state before the transition. For example, if a processor remains in a processing state for time T, then the number of transitions is incremented by int(T) when it leaves the state. Likewise if it is interrupted by an external event after time e while processing than the number is incremented by int(e). To get this same effect, we could redefine the model to make actual transitions equal to the time spent in processing. But this would incur unnecessary inefficiency that contradicts the very basis of discrete event modeling. However, the weighting for the leaving idle state would probably not be proportional to the elapsed time it has been waiting. If waiting requires no work, we would set:

[image: image8.wmf]("",,)0

ext

widleex

=

Note that we could model processing in a more detailed manner, for example, by including a description of the job being performed and thereby obtain a more refined estimate of the activity involved. However, there is no natural place to stop such refinement -- other than letting our objectives guide such termination, as indicated above.
Finally, if we are not interested in observing the activity of some components, we can selectively set the weighting functions identically zero for them, while defining them as desired for other components of interest.

While for discrete event models activity is calculated by discrete transitions, for continuous models this straightforward approach is not possible. One approach is to measure the discrete activity for a discrete event approximation and ascribe that to the original continuous model. However, since there are an infinity of approximations, there is no guarantee that there will be a consistent result. Fortunately, for differential equation models there is concept of activity that provides an intrinsic measure that relates to the number of transitions of an approximating discrete event model through quantization.
Activity for Continuous Time Segments

Activity, as it relates to quantization, is defined as the rate of change of the parameter in the temporal and spatial dimensions. The following is the definition of activity for a continuous segment. It provides a precise measure of the computational effort required by an ideal quantizer. In fact, it is a reasonable estimate of the computational effort required by implementations of these devices.
In Figure 2, D corresponds to the quantum (the minimum threshold for change below which no processing occurs) and the
[image: image9.wmf]i

m

correspond to the maxima and minima of the curve, where the first and last
[image: image10.wmf]i

m

are the values of the function at the initial and final times.

Figure 2. Definition of Activity

[image: image25.wmf]Activity =

|b

-

a|/D

)

(

t

f

t

D

quantumsize

=

b

a

Figure 2. Activity of a non

-

decreasing segment

The activity in an interval [0, T] can be calculated by summing the differences between the adjacent maxima and minima, i.e.
(1)
The average activity in an interval [0, T] is given by:

[image: image11.wmf]T

A

)

T

(

y

AvgActivit

=

The following fact is important because it relates the number of threshold crossings made by a DEVS simulator, activity over a time interval T and the quantum size D.

[image: image26.emf]D

)

T

(

A

)

q

,

T

(

ss

resholdCro

NumberOfTh

=

D

)T(A

)q,T(ssresholdCroNumberOfTh

Fact: The number of threshold crossings in an interval of length T for threshold levels that are equally spaced by quantum size, D, is:

(2)

[image: image27.emf]å

-

=

+

i

i

1

i

m

m

)

T

(

A

i

i1i

mm)T(A

Proof: Break up a curve with a finite number of extrema (minima and maxima) into segments between successive extrema (i.e., between a minimum and the next maximum, or a maximum and the next minimum). These segments are either non-decreasing or non-increasing as illustrated in the Figure showing a non-decreasing segment with minimum, a and maximum, b. Divide up the interval of length b-a into intervals of size D (the quantum size) by a grid as shown. There are (b-a)/D such intervals and no matter what the continuous curve f(t) looks like, it must cross each of the grid lines exactly once (where if as illustrated by the last crossing, it stays on the grid line we count this as one crossing). Thus for any non-increasing segment, the number of threshold crossings is the distance from the minimum to the maximum divided by the quantum size. It is easy to see that a similar situation holds for a non-decreasing segment (where the distance is the absolute value of the difference). So we have that in any inter-extrema segment we have:

[image: image12.wmf]1

||

#

ii

mm

crossings

D

+

-

=

Now since the Activity is the sum of successive distances between extrema (eq 1), it easily follows that the number of threshold crossings is the Activity divided by the quantum size (eq. 2).

Eqs 2 holds for continuous curves with a finite number of extrema in an interval - there will be slight error which is bounded by the quantum size, which will disappear as the quantum goes to zero. By definition, Eq. 2 will be true for any quantizer that takes exactly one quantum step at each transition and tracks the curve exactly.
Activity of Quantizer
Let us refer to the activity of a quantizer as measured by the number of transitions counted with its transition weighting functions as its internal activity. Likewise, the external activity will refer to the activity of the input stream as measured by its activity A as computed in eq. 2. We now examine a close relationship between the internal and external activities.
Fact: The number of transitions experienced by a quantizer with a quantum of size D is approximately equal to A/D where A is the activity of the input segment for suitable choice of weighting functions. As shown above for continuous curves, A is easily computed from their successive extrema (maxima and minima)..
Proof: As D gets smaller, the number of threshold crossings of any continuous curve with activity A approaches the ratio A/D. We choose weighting functions for the quantizer so that a transition is counted as unity just in case the input differs from the last value by more than the quantum. Under these conditions the number of transitions counted in an interval is equal to the number of threshold crossings for same quantum. Thus activity of the quantizer approaches the input activity divided by the quantum size, an approximation that becomes better as the size becomes smaller.
From the above proposition, we can see a close relationship between the two activity perspectives – in the ideal case the internal activity is proportional to the external activity. In general we can expect that for a well-designed real world quantizer the major contribution of its internal activity would come from the external activity of its sensed input stream (with the other part considered as overhead). If we relate activity to energy, say in terms of battery power consumption, then a useful prediction of such consumption will come from the anticipated pattern of activity of the input stream.
We now examine such a relationship.

Example: Quantizer with GPS and Activation Timeout
A quantizer extended with GPS input and finite activation time is described in the following tables. The model starts in the idle state and after activation via an activating input will remain active for a finite time before deactivation. While active, the device can receive sensor input to quantize as well as GPS location updates, both of which extend its time to remain active. The sensed output is paired with the current location to provide location-based activity output.
Such a device has a myriad of applications when replicated and deployed to multiple monitoring locations. Once deployed it can sense its location and remain fixed in place as in a network to detect wildfire activity. Alternatively, it can be mobile and report geo-referenced data on the move. This would be the case if worn by fire-fighters in their hats providing dynamic information on the fire-front perimeter.
Let the timeToDeactivate be a parameter determining how long the model will stay in the active state before automatically returning to the inactive state. This duration will be a design choice in configuring the device to the minimize power consumption in a particular environment.
Internal transition function:

	Phase
	
[image: image13.wmf]()

int

s

d

	
[image: image14.wmf]()

tas

	
[image: image15.wmf]()

s

l

	WaitForActivation
	
	
[image: image16.wmf]¥

	

	WaitForNextValue
	WaitForActivation
	timeToDeactivate
	

	sendValue
	WaitForNextValue
	0
	(lastValue,location)

External transition weighting function:

	Phase
	Input Port

	
[image: image17.wmf](,,)

ext

sex

d

	WaitForActivation
	inActivation
	WaitForNextValue

	WaitForNextValue
	inNextValue(val)
inLocation(loc)
	lastValue = val

WaitForNextValue
location = loc

WaitForNextValue

It would be crucial for such a device to be designed with battery power consumption in mind. The weighted transition approach provides a well-defined basis for this. In addition to the timeToDeactivate, the following are parameters that can be selected in the design decisions:

	Parameter
	Definition
	Sample Value

	whileInactiveRate
	time rate at which transition counts increase while not active
	 1

	 whileActiveRate
	time rate at which transition counts increase while active
	 10

	 processingActivation
	transition weighting for processing activation input
	 5

	 processingLocation
	transition weighting for processing location input
	 10

	 processingInput
	transition weighting for processing sensor input
	 100

	 sendingOutput
	transition weighting for sending location-based output
	 2

The internal and external weighting functions are defined in terms of these parameters:
Internal transition weighting function:

	Phase
	
[image: image18.wmf]()

int

ws

	WaitForNextValue
	whileActiveRate * (int) sigma

	sendValue
	sendingOutput

External transition weighting function:

	Phase
	Input Port

	
[image: image19.wmf](,,)

ext

wsex

	WaitForActivation
	inActivation
	processingActivation + whileInactiveRate * (int) e

	WaitForNextValue
	inNextValue

inLocation
	processingInput + whileActiveRate * (int) e
processingLocation + whileActiveRate * (int) e

Note that while active, transition counts accrue at the same rate with respect to elapsed time whether accumulated at internal or external transitions. This kind of consistency is facilitated by defining parameters such as whileActiveRate, which can be used in different places to convey equivalent meanings.
To consider the overhead issue mentioned above, let’s analyze some of the weighted transition accumulation.

The accumulation for a single activating input after an elapsed time e with no subsequent inputs and ending at the return to inactive state is:
processingActivation + whileInactiveRate * e + whileActiveRate* timeToDeactivate

which represents the overhead incurred by activating the device with no subsequent sensing.

The accumulation for m sensor inputs and n location updates spread anywhere over an active period of time T is:
Accum = m*(processingInput + sendingOutput)+ n* processingLocation + whileActiveRate * T

which represents the part attributable to the external activity of the sensor input stream –

 m*(processingInput + sendingOutput) – plus the rest which is the overhead incurred by processing GPS inputs and the continuous consumption of power while active during the period T. Clearly, the design should attempt to make whileInactiveRate as small as possible while also reducing whileAactiveRate, recognizing that the former will always be larger than the latter. Of course, the processing and sending consumption should be minimized as well. Taking the GPS processing overhead as negligible, and considering the external activity rate as Aext = m/T, we have the rate of accumulation while active as:
Accum/T= Aext*(processingInput + sendingOutput)+ whileActiveRate

which shows the proportional influence of external activity in relation to the continuous consumption of power while active. As above, Aext is inversely proportional to the quantum size which allows selection of this size as a design parameter knowing the external activity Aavg.
Implementation

The weighted counting of transitions is readily implemented in the DEVS Abstract Simulator. The simulator for atomic models can tell when a particular transition is about to occur and can therefore invoke the appropriate transition weighting function just before it makes this transition happen. The following modifies the atomic model simulator to implement this concept:

Atomic Devs-Simulator

Fehler! Textmarke nicht definiert.

variables:

parent

-- parent coordinator
tl

-- time of last event
tn

-- time of next event

[image: image20.wmf]n

--- number of transitions
DEVS

-- associated model

with total state (s, e)

y

-- output message bag

when receive i-message (i, t) at time t
tl = t - e
tn = tl + ta(s)

[image: image21.wmf]0

n

=

when receive *-message (*, t) at time t

if t = tn then
 y = l(s)

send y-message (y, t) to parent coordinator

when receive x-message (x, t) {

if (x = F and t = tn) then

[image: image22.wmf]int

()

nnwts

=+

s = dint (s)

else if (x != F and t = tn) then

s = dcon (s)

else if (x != F and (tl £ t £ tn))

e = t – tl

[image: image23.wmf](,,)

ext

nnwtsex

=+

s = dext (s, e, x)

tl = t

tn = tl + ta(s)

Algorithm 1 Simulator for Atomic DEVS modified to accumulate weighted transitions

The coordinator of a coupled model is extended to include a collaboration with all the simulators of its coupled model in which the coordinator can query the simulators to obtain the number of transitions accumulated each has accumulated.
Through a method, getSimActivity, an atomic model simulator can make collected activity of its model available upon request. Such requests might come from the coordinator of a coupled model in which the atomic model is a component. The coordinator can in turn provide an array of activities collected from the component simulators for use by the simulation experimenter, whether human or programmatic.
Providing Activity Awareness in Real-Time
[image: image28.wmf]Information

Energy

Information

Activity

Energy

a)

b)

Figure 1. Activity as the concept linking information and energy

Among the myriad of uses of such information is to control the operation of the model, such as a quantizer, executed in real time. As illustrated in Figure 4, the controller can adjust parameters of the quantizer such as the size of the quantum based on the activity level provided by the simulator. For example, a control policy might be to increase the quantum size when the internal activity increases beyond a threshold and to decrease the size when activity falls below a threshold. In this way, the controller can adjust the sensitivity of the quantizer in line with the external conditions. For example, when a fire front has already been detected, increasing the quantum size (thereby decreasing the transition rate) will save draining the battery and overloading the network on which it might be sending its output. Conversely, while watching for a fire to break out, the quantum should be small and just the right size to detect changes (in say temperature) that might indicate a significant rise in temperature. Similarly, the timeToDeactivate might be set so that the quantizer is active during the period of burning but is inactive after the fire has passed through its region of observation.

To implement the functionality of Figure 4, we place the controller and quantizer into a coupled model to be executed by a real-time coordinator. The activity output of the coordinator can be sent to the model using the activity thread class (e.g., in DEVSJAVA) and its coupling to the model’s external activity input port.
Further Developments

Activity awareness can be expanded in two directions, one involving toward direct hardware implementation as in the DEVS System on a Chip. The other direction being toward application of activity in learning and adapting. For example, the location-based activity quantizer just discussed might be implemented in hardware to provide lower cost, power consumption, and increased life time in deployments in stressful environments. Further, in addition to the control level in Figure 4, there can be a higher level of adaptation in which for example, effective policies for setting the quantum size and timeToDeactivate might evolve over time.

� EMBED PowerPoint.Show.8 ���

� EMBED PowerPoint.Show.8 ���

� EMBED XML.SAXReader.5 ���

� EMBED XML.SAXReader.5 ���

� EMBED PowerPoint.Slide.8 ���

[image: image29.wmf](

)

t

F

[image: image30.wmf]Information

Energy

Information

Activity

Energy

a)

b)

Figure 1. Activity as the concept linking information and energy

[image: image31.wmf][image: image32.wmf]i

t

[image: image33.wmf]1

t

[image: image34.wmf]n

m

[image: image35.wmf]t

[image: image36.wmf]n

t

[image: image37.wmf]3

m

[image: image38.wmf]1

m

[image: image39.wmf]T

[image: image40.wmf]D

[image: image41.wmf]2

t

[image: image42.wmf]3

t

[image: image43.wmf]2

m

[image: image44.wmf]D

)

T

(

A

)

q

,

T

(

ss

resholdCro

NumberOfTh

=

[image: image45.wmf]å

-

=

+

i

i

1

i

m

m

)

T

(

A

[image: image46.wmf]Quantizer

Control

Simulator

Simulator

provides

activity

feedback to

controller

Controller can

adjust parameters

of the model such

as quantum size

and

timeToDeactivate

Figure 4. Activity feedback to a controller

[image: image47.wmf]Activity =

|b

-

a|/D

)

(

t

f

t

D

quantumsize

=

b

a

Figure 2. Activity of a non

-

decreasing segment

_1328977977.unknown

_1329466266.unknown

_1329467829.unknown

_1329639761.ppt

Activity =

 |b-a|/D

Figure 2. Activity of a non-decreasing segment

b

a

)

(

t

f

t

D

quantumsize

=

UNKNOWN-0.unknown

UNKNOWN-1.unknown

UNKNOWN-2.unknown

_1329640296.ppt

 Quantizer

Control

Simulator

Simulator provides activity feedback to controller

Controller can adjust parameters of the model such as quantum size and timeToDeactivate

Figure 4. Activity feedback to a controller

_1329575688.unknown

_1329466551.unknown

_1329466778.unknown

_1329423630.unknown

_1329466215.unknown

_1329421149.unknown

_1329423350.unknown

_1329421259.unknown

_1329421122.unknown

_1329421053.unknown

_1328810396.unknown

_1328976756.unknown

_1328977052.unknown

_1328810483.unknown

_1310056384.unknown

_1328810211.unknown

_1328810296.unknown

_1328810202.unknown

_1328284177.ppt

Figure 1. Activity as the concept linking information and energy

Information

Energy

Information

Activity

Energy

a)

b)

_1310056380.unknown

_1310056383.unknown

_1310056382.unknown

_1310056379.unknown

