Automatic Test Case Generator

The increasing complexity and advanced decision capabilities of defense and civilian information technology-based systems requires that testing methodology has to become more rigorous, in-depth and thorough. At the same time, to keep up with the rapid change and short development life cycles expected from the system builders, tests have to be ready to conduct in time scales compatible with the agile development strategies of new systems. Formal data engineering and DEVS modeling and simulation can address the polar requirements of increased rigor and faster test development in a net-centric environment.

Introducing Automation into Traditional Testing Of Standards Conformance

[image: image3.wmf]AWACS

Theater

Warning

ABL

DSP/SBIRS

F

-

15

JLENS

THAAD

PATRIOT

MEADS

ATACMS

AVENGER

TEL

AEGIS (CEP)

SIS(MSCS)

SIS(MSCS)

tactical data

link standard

a)

b)

In the early years, Standards Compliance and Interoperability tests were performed on pieces of equipment such as individual radios in a laboratory setting. However, as communication components grew in complexity and became integrated into larger command and control (C2) systems, the testing process likewise had to evolve to maintain its effectiveness. In addition to lab testing, it became necessary to test systems with many component systems (known as Systems of Systems) in their real operational environments. Such live testing especially applied to Joint operations, where equipment and systems from the different military services (Army, Navy, etc.) had to interoperate together, a non-trivial requirement since each service has its own special requirements and associated ways of constructing, and contracting for, such equipment, even where there are standards that dictate the basic rules of operation.

Figure 0. Testing Systems of Systems for Interoperability and Standards Conformance. a) In the traditional approach voluminous message traffic exchanged among the players is monitored and analyzed by expert analysts. b) In the new approach computerized models derived from standards documents participate in the exercise, driving it or watching for opportunities to test for conformance.

Over the course of several decades, methods and software tools were developed that helped engineers and analysts to perform live tests of Systems of Systems for conformance to applicable communications command and control standards. In particular, a methodology emerged to carefully plan such test exercises where various participating organizations would be given scripts and roles to play in a simulated engagement. This would lead them to exchange messages carrying radar and other tactical data that could then be monitored by the testers and logged onto computers for later review. Such testing could detect certain failures of interoperability when, for example, messages failed to be properly relayed or never arrived at the intended destination. Furthermore, logged message streams could be intensively checked for conformance to tactical data message standards, particularly by noting whether their formats were correct and the values of their fields were within the prescribe limits. However, because the voluminous data could easily overwhelm human memory and perception capacities, there was severely limited ability to check more dynamic aspects of information exchange, such as whether messages were sent at the right time or in the right order.

The overarching goal of the Automated Test Case Generator (ATC-Gen) development effort is to increase the productivity and effectiveness of standards conformance testing. Recognizing the dynamic nature of the system behaviors specified by the critically important standard MIL-STD 6016C (Link 16), it was natural to apply mathematical systems theory and modeling and simulation concepts, in addition to current software technology to seek to automate portions of conformance testing. Systems theory provides well-formulated levels of system description (with formal equivalents for intuitive white and black box notions). The theory also underpins the Discrete Event Systems Specification (DEVS) formalism that provides a rigorous formal approach to building models and simulating them in various media – workstation, distributed simulation, real-time execution – with only a change in the simulation protocol. Thus the DEVS approach affords a computational framework based that enables the appropriate systems concepts to be implemented in software and hardware

[image: image1.emf]Objective:

Automate Testing

Capture Specification

as If-Then Rules in XML

Analyze Rules to

Extract I/O

Behavior

Synthesize DEVS

Test Models

Test Driver Executes

Models to Induce

Testable Behavior in

System Under Test (SUT)

Network

DEVS Simulator

Test Driver

HLA

SUT

HLA

Interact With SUT Over Middleware

Figure 1. Overview of the ATC-Gen Methodology

An overview of the ATC-Gen methodology, as in Figure 1, shows that a standards document (in this case MIL-STD 6016C) is analyzed to uncover relevant elements of the DEVS specification that then become the basis for semi-automated test case generation. In outline:
· Trained analysts identify if-then rules from the document, casting them into XML, with associated condition and action variables. (XML, the eXtended Markup Language, has become a standard for structuring, exchanging and storing data.)
· Automated analysis of the variable dependencies enables visualization of rule firings and selection of potential test sequences. The test sequences are expressed in XML and stored in a repository for combinational reuse.
· Test cases are represented as DEVS models that are semi-automatically generated from test sequences. DEVS hierarchical construction allows basic models from a small set of primitives to be coupled together in higher level models. An XML transformation automates the conversion of a set of test sequences into composite test packages that execute in the DEVSJAVA environment where they are tested against a stub representing the system under test (SUT).
· Finally, a Test Driver implemented in ADEVS executes the test models against the SUT in a distributed simulation infrastructure based on the HLA or other middleware.
Discrete Event Nature of Link 16 Specification
Since system theory and DEVS play central roles in the ATC-Gen, it is worth spending some time on how they apply particularly to Link 16. We begin with the recognition that the Link 16 specification is, in fact, a description of a dynamic system that tells how it should respond to stimuli in various situations. In contrast to the interpretation in the context of system development, the objective of conformance testing is to transform this description into a large family of test procedures and to specify the required outcomes of tests and sequence of tests. In this context, sequences of tests can be regarded as the injection of stimuli by a test driver that will realize the test procedures. To execute a test plan for a message-based system requires building such a driver to inject the appropriate input messages to the SUT and observe the SUT’s output messages. For testing conformance, a set of positive (to which the system should respond) and negative (to which it should not) test cases must be selected to provide the desired coverage. Further, the set of test cases should cover the normally expected interactions between the SUT and the rest of the world, as well as interactions that would not normally occur but cannot be excluded from consideration.

[image: image2.emf]Constraints

(Exception)

Rules

Stop

Modify C2

Record for TN

123

Rule

Processing

Stop, Do Nothing,

Alerts, Or jump to other

Transaction

Track

Display

Operator

decisions

Validity

checking

Transmit

Msg

Other ConsequentProcessing

Jumps(stimuli) to other

Transactions of specification

Transaction Level -example P.1.2 = Drop Track Transmit

PreparationProcessing

Time

outs

Periodic

Msg

Input to

system

DEVS

Output from

system

t

1

t

2t

3

t

4

I/O

Frame

0

I/O

Function

1

I/O

System

2

Coupled

System

3

Level

System Theory Provides Levels

of Structure/Behavior

Figure 2 The Discrete Event Systems nature of the Link 16 Specification

Figure 2 further illustrates the discrete event systems nature of the Link 16 specification. As a node in the tactical data link network, the inputs to the system come at discrete instants from external sources, such as human operators, sensors, or messages from other nodes on a network. The systems outputs also occur discretely in time as a result of scheduled events in the system, such as periodic updates of position. Other internal events such as timer expirations (time-outs) and detected anomalies, also result in outputs in the form of operator alerts. A system that has discrete event input and output behaviors can be characterized by a DEVS model. Further, the message processing steps illustrated in the upper left of Figure 2 are formulated at the higher structural levels of the system description hierarchy (at the right of the figure), while the tests that need to be developed lie at the lower behavioral levels. Thus systems theory helps to develop a systematic process for deriving testable input/output behaviors from the information processing functions specified at the structural levels.
Automation in Standards Conformance Testing
Introducing automation into standards conformance testing increasing the depth of testing and while reducing the time needed to prepare test exercises. The automation approach is based on FDDEVS, the SES and AutoDEVS tools. Critical areas in which a new approach could have a demonstrable effect were selected for initial development. The ATC-Gen project developed a tool-set and methodology that were successful in meeting the requirements of the critical application and established general agreement that the approach was ready for adoption and integration into enterprise testing paradigms. In a project at the JITC, the SUT that was tested was a system developed by the Single Integrated Air Picture (SIAP) Joint Program Office (JPO). The testing took two weeks with the following results:
· To develop 102 test cases, the generation process took approximately 3 months
· 74 test cases were generated using the AutoDEVS methodology
· 23 test cases were created from existing test cases
· 5 were created by hand using the new test case structure

· The new automation structure greatly reduces test case creation time

· On average, a new system test case required 2-6 hours.

· In the worst case, it is still a reduction of more than half over the earlier manual process.

· Final test case results were: 85 passed, 15 failed, and 2 partially passed.
� EMBED PowerPoint.Slide.8 ���

[image: image4.wmf]AWACS

Theater

Warning

ABL

DSP/SBIRS

F

-

15

JLENS

THAAD

PATRIOT

MEADS

ATACMS

AVENGER

TEL

AEGIS (CEP)

SIS(MSCS)

SIS(MSCS)

tactical data

link standard

a)

b)

_1202395337.ppt

System Theory Provides Levels

 of Structure/Behavior

		Level

		3		Coupled
System

		2		I/O
System

		1		I/O
Function

		0		I/O
Frame

Constraints

(Exception)

Rules

Stop

Modify C2

Record for TN

1

2

3

Rule

Processing

Stop, Do Nothing,

Alerts, Or jump to other

Transaction

Track

Display

Operator

decisions

Validity

checking

Transmit

Msg

Other ConsequentProcessing

 Jumps (stimuli) to other

Transactions of specification

Transaction Level - example P.1.2 = Drop Track Transmit

Preparation

Processing

Time

outs

Periodic

Msg

Input to

system

DEVS

Output from

system

t

1

t

2

t

3

t

4

_1330577248.ppt

tactical data

link standard

a)

b)

AEGIS (CEP)

SIS(MSCS)

SIS(MSCS)

AWACS

Theater

Warning

ABL

DSP/SBIRS

F-15

JLENS

THAAD

PATRIOT

MEADS

ATACMS

AVENGER

TEL

_1202395122.ppt

Objective: Automate Testing

Capture Specification as If-Then Rules in XML

Analyze Rules to Extract I/O Behavior

Synthesize DEVS Test Models

Test Driver Executes Models to Induce Testable Behavior in System Under Test (SUT)

Interact With SUT Over Middleware

Network

DEVS Simulator

Test Driver

HLA

SUT

HLA

