SIMULTECH'19 Prague, Czech Republic, July 29-31, 2019

Opening Keynote:

The vital role of simulation for many disciplines: A desirable shift of paradigm from model-based paradigm to simulation-based paradigm

Tuncer Ören, University of Ottawa, Canada

http://www.site.uottawa/~oren/y/2019/07-29_ Prague-keynote.ppsx

A **Question**:

As a simulationist, do you think that proper use of simulation

(i.e., experimentation and/or
experience to enhance any of three types of skills)
may be beneficial
for several applications in many disciplines ?

As a researcher in simulation, your answer can be: Yes or No

As a researcher in simulation, if your answer is: Yes:

- We are on the right track.
- Please elaborate on it for the benefit of several application areas in different disciplines.

As a researcher in simulation, if your answer is: **No**:

(1) Please elaborate on why and how simulation cannot have a vital role.Your points may be beneficial for other researchers.

(2) Do you think you can recommend ways to improve simulation so that it may have vital role for some application areas?

Concepts for advanced simulation methodologies

An example. The article started as: *"Conventional simulation techniques have three shortcomings* when applied to *large-scale modelling"*

Tuncer I. Ören Computer Science Department University of Ottawa Ottawa, Ontario, K1N 6N5 Canada

bu

and

Bernard P. Zeigler Department of Applied Mathematics The Weismann Institute of Science Rehovot, Israel Ören, T.I., Zeigler, B.P. (1979). <u>Concepts</u> for Advanced Simulation Methodologies. (SCS) Simulation, 32:3, 69-82.

The Essence of Simulation:

Experiments and **experience** are the essence of modeling & simulation (M&S).

- Simulation is performing goal-directed **experiments** using a model of a dynamic system.
- Simulation is gaining **experience**, by use of a representation of a system,
 - *to enhance* any one of three types of **skills**:
 - -- motor skills (by virtual simulation, or simulators),
 - -- decision making and communication skills
 - (by constructive simulation, gaming simulation), -- *operational skills* (by live simulation)
 - for entertainment purposes (simulation games)

A brief history of **experimentation**:

Aristotelian logic:

The traditional system of logic by Aristotle (384 BC – 322 BC), concerned chiefly with **deductive reasoning**" (Expressed in his "**Organon**")

Francis Bacon, as a reaction to Aristotle's Organon: **New Organon** (Novum Organum, 1620).

Francis Bacon promoted **experimentation** which is one of the pillars of scientific method.

Experimentation

(as one of the pillars of scientific method):

- Using the real system
 - in vivo
 - in vitro (under lab. conditions)
- Using a model: simulation
 - in silico

Consider

- Advantages and
- Disadvantages of all

"From a systemic point of view, simulation can be used to find the values of **output**, **input**, or **state variables** of a system; provided that the values of the two other types of variables are known."

(Walter Karplus, 1976)

Type of problem:		Given		Find
Analysis	input	state		Output
Design	input		output	State
Control		state	output	Input

Challenge: Simulation-based software development - for control systems, for example

Possibilities for Enriched (Augmented) Reality:

		Equ	ipment
		Real	Virtual
tor	Real	- Live simulation (a human operator uses <i>real equipment</i> (laser/gun)	Virtual simulation Simulator Virtual simulator
Operat	Virtual	- Automated vehicles (auto pilot, aircraft without pilot; vehicle without driver)	e.g., an AI aircraft (in dogfight)

Simulation and Real System:

2 categories of simulation: (with respect to connectivity of operations)

- **Stand-alone simulation** (operations of the simulation and the system of interest are **independent**)
- **Integrated simulation (symbiotic simulation)** (operations of the simulation and the system of interest are **interwoven**)

(Operations of simulation and the system of interest are interwoven.) (Integrated simulation/symbiotic simulation)

Simulation **enriches** real-system operation. (Real-System Enriching Simulation)

Simulation supports real-system operation.
 (Real-System Support Simulation)

Simulation and Real System: Integrative simulation (symbiotic simulation) To (enrich) augment reality

In enriched (augmented or mixed) reality simulation, real and virtual entities (that can be people or equipment) and the environment can exist at the same time.

Hence, operations can take place in a richer *augmented reality environment*.

Simulation **supports** real-system operation. **Real-System Support Simulation** The SOI and the simulation program **operate alternately** and provide predictive displays for:

- Decision support
- On-the-job training

About 750 types of simulation About 120 types of inputs to simulation models

Ören, T., S. Mittal, U. Durak (2019 Invited Chapter). **Modeling and Simulation: The Essence and Increasing Importance.** Chapter 1 in the book: Modeling and Simulation of Complex Communication Networks (M. A. Niazi, ed.), pp. 3-26. IET Book Series on Big Data. (Appendix A: A list of over **750 types of simulation**, Appendix B: A list of **120 types of input**)

Source of input	Mode of input	Type of input	Types of inputs
Exogenous input (externally generated	Passive acceptance of exogenous input (imposed or forced input)	Type of access to input: coupling, argument passing, knowledge in a common area, message passing. Nature of input: - Data (facts) - Forced Events - Sensation (converted sensory data: from analog to digital; single or multi sensor: sensor fusion) -External goals (imposed goals) - Online knowledge	
input)	Active perception of exogenous input (perceived input)	 <i>Perception</i> (interpreted, sensory data and detected events) includes: decoding, selection (filtering), recognition, regulation <i>Perceived goals</i> <i>Evaluated inputs</i> evaluation of inputs (acceptability) evaluation of source of inputs (reliability, credibility) 	

Source of inj	put	Mode of input	Type of input
Endogenous	Ac of e	tive perception endogenous input	- Introspection (perceived internal facts, events; or realization of lack of them)
input (internally generated input)	Ge	neration of logenous input	 Anticipated facts and/or events (anticipatory systems) Internally generated questions Internally generated hypotheses by: Expectation-driven reasoning (Forward reasoning) (Bottom-up reasoning) (Data-driven reasoning) Model-driven reasoning Internal goals (internally generated goals)

Challenge: Use endogenous inputs in simulation

A personal view:

(Some aspects expressed previously:

Lectures at Beijing and Changsha, China, September 2011

"Future of Modeling and Simulation:

Normative Views, Desirable Growth Areas & Challenges")

He that would perfect his work must first sharpen his tools.

Confucius, 551-479 BC

Consider advances in :

(1) Simulation

(2) Other disciplines by simulation-based approaches

M&S from the **Tool Hierarchy:**

		Types of tools			
Levels		Physical tools	Software tools	M&S tools	
Manual tools					
		Additional features			
Power tools					
		А	dditional feature	es	
Cybernetic tools					

Level	Physical tools	Software tools	M&S tools
Manual tools	 stone tools metallic tools 	 hand-coded programs non-automated documentation (including specification & processing of requirements) 	 hand-coded M&S programs (simulation is an art / craft era)

Level		Physical tools	Software tools	M&S tools
Manual tools		 stone tools metallic tools	 hand-coded programs non-automated documentation 	• hand-coded M&S programs (simulation is an art / craft era)
	Additional features	• (<i>Energy</i>) Ability to perform work	 <i>Computer-aided</i> programming <i>Computer-</i> <i>support</i> in software life cycle 	 <i>Computer-aided</i> M&S programming <i>Computer support</i> in M&S (in areas other than model behavior generation)
	Power tools	 simple power tools machine tools integrated machines (transfer machines) 	 software tools software tool kits software environments integrated computer-aided software engineering tools 	 M&S tools (e.g., program generators, symbolic processors of models & other M&S components) M&S tool kits M&S environments integrated environments for M&S computer-aided design and/or problem solving environments with simulation abilities

	Level	Physical tools	Software tools	M&S tools
Manual tools		 stone tools metallic tools 	 hand-coded programs non-automated documentation 	• hand-coded M&S programs (simulation is an art / craft era)
	Additional features	• (<i>Energy</i>) Ability to perform work	 <i>Computer-aided</i> programming <i>Computer-support</i> in software life cycle 	 <i>Computer-aided</i> M&S programming <i>Computer support</i> in M&S (in areas other than model behavior generation)
	Power tools	 simple power tools machine tools integrated machines (transfer machines) 	 software tools software tool kits software environments integrated computer- aided software engineering tools 	 M&S tools (e.g., program generators, symbolic processors of models & other M&S components) M&S tool kits M&S environments integrated environments for M&S computer-aided design and/or problem solving environments with sim. abilities
	Additional features	• Knowledge processing	Advanced knowled Artificial Intelligent	<i>dge processing</i> ability nce (AI), Software agents
Cybernetic tools		Knowledge processing (kp) machines • Machines for kp: Computers	 AI in software AI in software environments	 AI-directed simulation Simulation of intelligent entities AI for simulation AI- supported simulation AI-based simulation
		• Machines with kp abilities (smart machines)	 Agents in software Agents in software environments 	Agent-directed simulation • Simulation for agents: - agent simulation • Agents for simulation: - agent-supported simulation - agent-monitored simulation

Agent-directed simulation (ADS)

- Simulation for agents:
 - agent simulation (simulation of agent systems)
- Agents for simulation:
 - agent-supported simulation (agents for interfaces)
 - agent-monitored simulation (agents at run time)

Synergies of simulation with some disciplines

Synergies between 2 entities A & B can be:

• First order synergy:

• Higher order synergy:

Direct contributions between them

B is enhanced due to contributions of A to B

Indirect contributions between them

B is enhanced due to contributions of enhanced A to B

Wiley Series in Systems Engineering and Management + Andrew P. Sage, Series Edine-

AGENT-DIRECTED SIMULATION AND SYSTEMS ENGINEERING

Edited by LEVENT YILMAZ AND TUNCER OREN

"The only book to present the synergy between modeling and simulation, systems engineering, and agent. . . "

> 550 pages September **2009**

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527407812.html

Synergies of simulation, agents, and systems engineering

(abbreviations:
 ADS: Agent-directed simulation
 ADSS: ADS systems
 SE: Systems engineering)

Challenges

- Develop simulation systems engineering for social systems
- Consider use of simulation (simulators) for pilot training;
 - & remember that most social systems —even though somehow more resilient— are much more complex.
- Decision skills can be enhanced by simulation-based experiences.

An increasing number of social system simulation conferences is a very promising development.

We have also

- Cognitive simulation
- Emotive simulation
- Including representation / simulation of human personality, emotions, understanding, misunderstanding, computational awareness.

Challenges:

- Use **conceptual models** to be transformed to computational (programmed) models.
- Model bases to store conceptual models.
- Maintenance of conceptual models instead of computational (programmed) models.
- Develop concepts and tools for interoperability of conceptual models

Another possibility

Add virtual gauges (measurement devices) (with or without threshold controls) to simulation systems

Abdullah, B., Ören, T., (1997). Enhancement of a Simulation Environment with IMAGES (Intelligent Multi-Agent Based Virtual Gauges).
In: Proceedings of the 1st World Congress on Systems Simulation, Singapore, Sept. 1-4, 1997, pp. 359-363.

Model-based Approaches: A Brief History

Concepts for advanced simulation methodologies

Tuncer I. Ören Computer Science Department University of Ottawa Ottawa, Ontario, K1N 6N5 Canada

bu

and

Bernard P. Zeigler Department of Applied Mathematics The Weismann Institute of Science Rehovot, Israel **The first article** where model and experimentation (as well as several components of experimentation) were separated.

Leading to model-based simulation

(and hence to **model-based approaches**).

Ören, T.I., Zeigler, B.P. (1979). <u>Concepts</u> for Advanced Simulation Methodologies. Simulation, 32:3, 69-82.

Simulation has been the starting point for model-based activities:

Simulation and Model-Based Methodologies: An Integrative View

Edited by T.I. Ören B.P. Zeigler M.S. Elzas

NATO ASI Series

Ören, T.I. (**1984**). Model-Based Activities: A Paradigm Shift.

In: Simulation and Model-BasedMethodologies: An IntegrativeView, T.I. Ören, B.P. Zeigler,M.S. Elzas (eds.). Springer-Verlag, Heidelberg, Germany,pp. 3-40.

The first declarative simulation language: "GEST: General Systems Theory* implementor" Doctoral dissertation, T. Ören (**1971**) Univ. of Arizona, Tucson, Arizona.

*Based on: of Dr. A. Wayne Wymore (1967). A Mathematical Theory of Systems Engineering: The Elements. Krieger, Huntington, NY.

And one of the first model-based approach studies:
A. Wayne Wymore (1993).
Model-Based Systems Engineering, CRC Press, Boca Raton.

Currently, Model-based approach is widely used:

model-based systems engineering model-based model-based testing model-based design model-based reinforcement learning model-based software engineering model-based clustering model-based machine learning model-based active exploration model-based engineering

Simulation-based Approaches:

Gianni, Daniele; D'Ambrogio, Andrea; Tolk, Andreas, eds. (December **2014**). **Modeling** and **Simulation-Based Systems Engineering Handbook** (1 ed.). USA: CRC Press. <u>ISBN 9781466571457</u>

SIMULATION AND MODELING AS THE ESSENCE OF COMPUTATIONAL SCIENCE

Andreas Tolk The MITRE Corporation 903 Enterprise Parkway #200 Hampton, VA 23666, USA atolk@mitre.org

SummerSim-SCSC18; **2018**, July 9-12, Bordeaux, France

Simulation Foundations, Methods and Applications

Saurabh Mittal Umut Durak Tuncer Ören *Editors*

Guide to Simulation-Based Disciplines

Advancing Our Computational Future

Contemporary view:

Simulation-Based Disciplines

Mittal, S., U. Durak, T. Ören (eds.).
(2017). Guide to Simulation-Based
Disciplines: Advancing our
Computational Future, Springer.

Ören, T., S. Mittal, U. Durak (2017).

The **Evolution of Simulation** and its Contributions to Many Disciplines.

Chapter 1 of: S. Mittal, U. Durak, T. Ören (eds.), Guide to Simulation-Based Disciplines: Advancing our Computational Future, Springer, pp. 3-24

Pa	rt I Background	
1	The Evolution of Simulation and Its Contribution to Many Disciplines Tuncer Ören, Saurabh Mittal and Umut Durak	3
2	Modeling and Simulation (M&S) Technology Landscape Ernest H. Page	25
Pa	rt II Engineering and Architecture	
3	Simulation-Based Engineering	39
4	Simulation-Based Systems Engineering Andreas Tolk, Christopher G. Glazner and Robert Pitsko	75
5	Simulation-Based Cyber-Physical Systems and Internet-of-Things Bo Hu Li, Lin Zhang, Tan Li, Ting Yu Lin and Jin Cui	103
6	Simulation-Based Complex Adaptive Systems Saurabh Mittal and José L. Risco-Martín	127
7	Simulation-Based Software Engineering	151
8	Simulation-Based Architectural Design	167
Pa	rt III Natural Sciences	
9	Simulation-Based Science	185

ТоС

10	Systems Design, Modeling, and Simulation in Medicine	209
Par	t IV Social Sciences and Management	
11	Flipping Coins and Coding Turtles David C. Earnest and Erika Frydenlund	237
12	Simulation-Based Enterprise Management Gregory Zacharewicz, Amir Pirayesh-Neghab, Marco Seregni, Yves Ducq and Guy Doumeingts	261
Par	t V Learning, Education and Training	
13	Simulation-Based Learning and Education	293
14	Simulation-Based Military Training	315
Epi	logue	363
Aut	hor Index	365
Sub	ject Index	367

Contemporary view: Simulation-Based Disciplines

Ören, T. (**2018** July). On the Advantages of Simulation-based Approach in Engineering.

COJ Electronics & Communications, vol. 1, issue 1. COJE

Ören, T., S. Mittal, U. Durak (**2018** – Invited Paper). A Shift from Model-Based to Simulation-Based Paradigm: Timeliness and Usefulness for Many Disciplines.

International Journal of Computer & Software Engineering. Vol:3, issue: 1.

Contemporary view: Simulation-Based Disciplines

Ören, T., S. Mittal, U. Durak (2019 Invited Chapter).

Modeling and Simulation: The Essence and Increasing Importance.

Chapter 1 in the book: Modeling and Simulation of Complex Communication Networks (M. A. Niazi, ed.), pp. 3-26.

IET Book Series on Big Data.

(Appendix A: A list of over 750 types of simulation,

Appendix B: A list of **120 types of input**).

Challenges:

- Simulation-based problem-solving environments
- Simulation-based Computer-aided design (CAD)
- Simulation-based (several types of) engineering
- Simulation-based science
- Simulation-based education
- Simulation-based social science
- Simulation-based training: for conflict management

- In October (2018), <u>Lion Air Flight 610</u> crashed just minutes after taking off from Jakarta, Indonesia, killing 189 people.
- In March (2019), another Boeing 737 Max, <u>Ethiopian</u> <u>Airlines Flight 302</u>, crashed minutes after takeoff; all 157 people on board died.
- Inquiries into both crashes are continuing, but <u>black box data</u> immediately pointed <u>similarities between the two</u> accidents:
- A system designed to help the plane avoid stalling appears to have malfunctioned, pushing down the nose of the plane.

https://www.nytimes.com/interactive/2019/business/boeing-737-crashes.html

Question:

Wouldn't simulation be useful in the following cases?

Simulation-based experiments to **test** the effects of the sensors under several experimental conditions.

Simulation-based experience to **train** pilots for the aircrafts equipped with new sensors.

We have seen outlines of:

A question Essence of simulation A personal view tools synergies challenges Model-based approach **Simulation-based** approach Two disasters and a question For the researcher in you:

No progress is ever possible by keeping the state-of-the-art, no matter how advanced it is.

Emulate nature; keep blooming!

Welcome to the **Simulation-based Era!**

Thank you for your attention!

